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Here we discuss the annealing behavior of an infinite-range �J Ising spin glass in the presence of a
transverse field using a zero-temperature quantum Monte Carlo method. Within the simulation scheme, we
demonstrate that quantum annealing not only helps finding the ground state of a classical spin glass, but can
also help simulating the ground state of a quantum spin glass, in particular, when the transverse field is low,
much more efficiently.
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Quantum annealing �QA� �1–10� is a method of finding
the ground state �minimum energy state� of a given classical
Hamiltonian H employing external quantum fluctuations �by
adding a time-dependent kinetic part H��t� which does not
commute with H� and subsequent adiabatic reduction of
them �by reducing the strength of H��t� from a very high
initial value to zero finally�. If the evolution is slow enough
and the initial state is the ground state of the total Hamil-
tonian �which is effectively given by the dominating kinetic
part H��t=0��, then according to adiabatic theorem of quan-
tum mechanics the state of the system will always remain
close to the ground state and thus, at the end of the anneal-
ing, the system will be found in the ground state of the clas-
sical Hamiltonian �at the end only the original classical part
is retained� with a high probability �4�. Based on this prin-
ciple, algorithms can be framed to anneal complex physical
systems like spin glasses as well as the objective functions of
hard combinatorial optimization problems �like the traveling
salesman problem� mapped to glasslike Hamiltonians, to-
wards their ground �optimal� states. So far, the successful
QA Monte Carlo schemes are mostly based on finite tem-
perature Monte Carlo methods �1,11�. Here we study the
annealing behavior of an infinite-range �J Ising spin glass in
a transverse field, using a zero-temperature quantum Monte
Carlo method. We show here, with the above-mentioned
Monte Carlo scheme, one cannot only find the classical
ground state with the help of QA, but one can also simulate
the low-kinetic energy ground states of the quantum Hamil-
tonian much more efficiently with the help of QA.

The model and the basic QA scheme for it are introduced
in Sec I. In Sec. II we discuss at length the zero-temperature
quantum Monte Carlo method used here. We discuss the re-
sults of QA employed to reach the ground state of the clas-
sical spin glass in Sec. III. We demonstrate in Sec. IV how
QA can be utilized to simulate the ground state of a quantum
spin glass. We conclude with a short summary.

I. MODEL

We consider an infinite range Ising spin system whose
Hamiltonian is given by

H = − �
i,j��i�

N

Jij�i
z� j

z, �1�

where �i
z is the z component of Pauli spin, representing a

classical Ising spin at site i and Jij’s are random variables
taking up values either +1 or −1 with equal probabilities. The
above Hamiltonian describes a cluster of N Ising spins, each
connected to all others through exchange interactions of
equal strength �J=1� but random signs. To make the energy
extensive in system-size, one has to scale the energy with a
factor of N3/2, as done in the rest of the paper. The system is
heavily frustrated �i.e., no spin configuration can satisfy all
the bonds� due to the presence of both ferromagnetic and
antiferromagnetic bonds in random fashion. The high degree
of connectivity �i.e., the infinite range of the interactions�
adds to the complexity of the problem. For such a system,
finding the ground state spin configuration for any arbitrarily
given realization of interactions �the set of Jij’s� is known to
be a nondeterministic-polynomial-time-hard �NP-hard�
problem �13�. In the thermodynamic limit the system be-
comes a nonergodic spin glass below some spin glass tem-
perature TG.

The eigenstates of H �the basis states� are the direct prod-
ucts of the eigenstates of �i

z’s. Each basis state represents a
distinct spin configuration of the system. To perform zero-
temperature quantum annealing of this �J Ising system, we
add a transverse field term H�=��t��i=1

N �i
x, where �i

x’s are x
components of Pauli spins which introduce probability of
tunneling between the basis states �classical configurations�,
and ��t� is the strength of the transverse field. The total
Hamiltonian is thus given by

Htot = H + H��t� = − �
i,j��i�

N

Jij�i
z� j

z − ��t��
i=1

N

�i
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We start with a high enough value of � initially �at t=0�
and sample the ground state of Htot using a zero-temperature
quantum Monte Carlo algorithm �discussed below�. During
sampling, we reduce the strength ��t� of the transverse field
following a linear annealing schedule

��t� = �0�1 − t/�� , �3�

where t denotes evolution time. At the end of the simulation
�t=�� we are left with the classical Hamiltonian H and if � is
large enough, the simulated system is finally found to be in
one of its ground state configurations. For low values of �,
one generally ends up with a higher energy configuration.

II. ZERO-TEMPERATURE QUANTUM MONTE CARLO
METHOD

To simulate the ground state of Htot, we use a zero-
temperature quantum Monte Carlo technique �12�. This
Monte Carlo method projects out the ground state �at zero
temperature� of a given quantum Hamiltonian unlike the path
integral Monte Carlo method �also projective in nature�
which samples the thermal state of a quantum system at
some nonzero temperature. The path integral Monte Carlo
method becomes exceedingly inefficient as the temperature
is lowered, and comes to a halt at T=0. We describe the
method to some detail here, since it is not broadly known,
and has been implemented so far only to simulate pure sys-
tems with short-ranged interactions. Here we generalize the
implementation for an infinite-range system with disorders.

In this method one makes a linear transformation of the
form

W = CI − Htot, �4�

where C is a suitable real constant and I is the identity
operator, such that the matrix representation of W in the
eigenbasis of H is non-negative and irreducible �if such a
transformation could not be done for an Htot, then this
method would not be applicable for it�. One can then con-
sider W to be the transfer-matrix of a uniform chain �with
periodic boundary condition �PBC�� of classical clusters,
where each cluster is nothing but a classical cluster of N
mutually interacting Ising spins represented by H.

Now the key point is that one can simulate the chain of
classical clusters using the elements of its transfer-matrix W
and in this simulation the equilibrium average of any observ-
able �say, energy� related to a single cluster is approximately
equal to the expectation value of the observable over the
dominant eigenstate of W. The dominant eigenstate of W in
turn is the ground state of Htot �due to the form of the linear
transformation between them�. Thus we actually simulate the
ground state properties of Htot by simulating the chain. In the
next section we establish the scheme in detail.

A. Simulation of a chain of classical clusters using transfer
matrix

In this section we demonstrate that the equilibrium aver-
ages for a single member of a uniform classical chain �with
PBC� is approximately equal to the respective averages �ex-

pectation values� over the dominant eigenstate of the transfer
matrix of the chain. Let us consider a uniform chain of L
identical classical spin clusters �or any localized discrete de-
grees of freedom in general� �i’s, as shown in Fig. 1. Each of
the �i’s can be in, say, p different states. One may note here
that if each cluster � is a spin cluster embedded in dimension
d, then the chain is actually a d+1-dimensional object. Since
the chain is uniform, its Hamiltonian will be of the form

Hd+1 = �
�=1

L

f���,��+1� ,

where f��� ,��+1� is a p� p matrix whose elements are the
possible contributions to the Hamiltonian from a pair of
neighboring spins, as each of them takes up p different val-
ues independently. The partition function of the chain is thus
given by

Z = �
�1=1

p

�
�L=1

p

exp�− 	�
�=1

L

f���,��+1��
= �

�1=1

p

�
�L=1

p

e−	f��1,�2�e−	f��2,�3�
¯ e−	f��L,�1�

= �
�1=1

p

�
�L=1

p

W�1�2
W�2�3

¯ W�L�1
, �5�

where W����+1
=e−	f���,��+1�, 	 being the temperature in-

verse, and p=2N, N being the number of spin in each cluster.
Here, many of the elements W����+1

’s are zero, which might
be viewed as some additional external constraints on the dy-
namics. Again, since each of �� and ��+1 can take up p
independent values �i.e., can be in p independent states�,
W����+1

defines a p� p matrix W. Hence summing over all
the indices from �2 to �L and recalling the rule of matrix
multiplication one gets

µλ

µλ+1

µλ µλ+1f( , )

µ

µ

µ

1

2

L

FIG. 1. The uniform chain of clusters �with periodic boundary
condition� used to simulate the ground state of Htot �Eq. �2��. A
cluster �solid circle� in the chain is basically the cluster of N Ising
spins with a given realization of Jij’s, represented by H in Eq. �2�.
The interactions f��� ,��+1� between any two nearest-neighbor
clusters are determined by the relation W����+1

=e−	f���,��+1�,
where W is obtained from Htot by the linear transformation �Eq.
�4��. If the dimension of each cluster is d, then the dimension of the
resulting chain is d+1.
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Z = �
�1=1

p

�WL��1�1
= Tr�WL� .

The matrix W is a transfer matrix for the chain. If the matrix
W is symmetric then �it is not the necessary but the sufficient
condition� one can write

Z = �
r=1

p

�
r�L, �6�

where 
r are the eigenvalues of W ordered by the index r, so
that �
i�� �
 j� if i� j. Here a few points are to be noted. Since
the matrix W is both non-negative and primitive �i.e., there
exists some finite n, such that Wn is strictly positive�, ac-
cording to Perron-Frobenius theorem �see �14�� the dominant
eigenvalue 
1 is strictly positive and nondegenerate. Thus

Z = �
1�L�1 + �
r=2

p 	 
r


1

L� � �
1�L.

Here, the leading order error is �
2 /
1�L and since 
1 is non-
degenerate,

lim
L→

	 
i


1

L

= 0 �7�

for any i�1.
Now, to see how one can simulate the chain using W, one

has to note that the probability that the chain be in a given
state A, in which �1=�1�A� ,�2=�2�A� , . . . etc., is

P�A� = �e−	f��1�A�,�2�A��
¯ e−	f��L�A�,�1�A���/Z

= �W�1�A��2�A� ¯ W�L�A��1�A��/Z . �8�

Thus using the conditions of detailed balance, one obtains
transition probability from a state A to another state B given
by

P�A → B� =
W�1�B��2�B� ¯ W�L�B��1�B�

W�1�A��2�A� ¯ W�L�A��1�A�
, �9�

where of course, the move is always accepted if P�A→B�
�1. Thus if W is given, we can simulate the equilibrium
properties �thermal average� of any physical quantity related
to a cluster � in the chain. To obtain that, we require to know
the probabilities for the cluster � to be in its different pos-
sible states when the chain is in equilibrium. Let P��=k�
denote the probability that the cluster is found in its kth state
when the chain is at thermal equilibrium �at a given 	�. If the
kth state is represented by a column vector �k�, then these
column vectors satisfy the matrix relation

i�W�j� = Wij ,

where i� is the transpose of �i� and the sequence of matrices
implies the proper multiplications between them.

On the other hand, if �E1� is the dominant �normalized�
eigenvector of W corresponding to the dominant eigenvalue

1, and if W is Hermitian then one can expand �E1� linearly
in terms of the basis vectors as

�E1� = �
k=1

p

�k
1�k� , �10�

where �k
1 is the amplitude of the basis state �k� in �E1�. Thus

in the sampling of �E1� using the basis states �k�’s, the prob-
ability of occurrence of the state �k� will be ��k

1�2. Now, one
can show that

P�� = k� = ��k
1�2 + O„�
2/
1�L

… . �11�

The above equation says that one can sample the dominant
eigenstate �E1� of the matrix W just by sampling its basis
states �classical configurations of a cluster in the chain� ac-
cording to the probability of their occurrence in the simula-
tion of the cluster at equilibrium in the chain �using the ele-
ments of W itself, as prescribed in Eq. �9��.

To prove Eq. �11�, we take any cluster in the chain and
call it �1. The probability that �1 is found in the state �k� is

P��1 = k� =
1

Z���2

�
�3

¯ �
�L

W�1�2
W�2�3

¯ W�L�1�
�1=k

=
1

Z
�W�kk

L =
k��W�L�k�
tr��W�L�

. �12�

Above, we have summed up the probabilities of all the con-
figurations of the chain, in which �1=k. Now let �
i� �i
=1,2 , . . . , p� denote the normalized eigenvector of W corre-
sponding to the eigenvalue 
i. Then one may have a linear
transformation between �
i�’s and �k� of the form

�
i� = �
k

�k
i ��k�

and the reverse transformation

�k� = �
i

��†�i
k�
i� = �

i

�
k

i*�
i� ,

� being a unitary matrix. Hence

WL�k� = �
i

�
k

i*
i
L�
i� ⇒ k�WL�k� = �

i

��k
i �2
i

L,

using orthonormality of �
i�’s. Thus from Eq. �12� we get

P��1 = k� =
k�WL�k�
tr�WL�

=
�i��k

i �2
i
L

�i
i
L =

�i��k
i �2�
i/
1�L

1 + �i�1�
i/
1�L

� ��k
1�2 + O„�
2/
1�L

… ,

which proves Eq. �11�.
Thus one can in fact simulate the dominant eigenstate of

any given suitable �Hermitian, non-negative, and primitive�
N�N matrix up to a good approximation using the above
results. One has to define a uniform chain �with PBC� of
classical clusters, each having N possible configurations. The
ith state of a cluster corresponds to the ith vector of the basis
in which the given matrix is represented. One then views the
given matrix as the transfer matrix for a cluster in the chain
and simulates the chain using its elements �as prescribed in
Eq. �9��. At equilibrium, the probability of getting a cluster in
its ith state is equal to the modulus square of the weight of
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the ith basis vector in the representation of the dominant
eigenstate of the given matrix �up to an error of the form
discussed above�.

B. Implementation of the Monte Carlo method

We now illustrate the implementation of the above Monte
Carlo scheme by employing it to simulate the ground state of
Htot given in Eq. �2�. Here basis vector �k�’s are the eigen-
vectors of H, and a classical cluster is the cluster of N Ising
spins with exchange interaction described by H. Now we
make a linear transformation of the form given in Eq. �4�,
with C=N�N−1� /2. The resulting W matrix is clearly non-
negative �since none of its diagonal elements are all smaller
than N�N−1� /2 and off-diagonal elements are either 0 or
��t�, which we always take to be positive�. Since Htot con-
nects a basis state to all other basis states that can be ob-
tained by a single spin flip from it, there is no closed sub-
space for Htot. Thus W is also irreducible. It can be shown
that for a non-negative irreducible matrix, all the results of
the Perron-Frobenius theorem we have used here hold good
�14�. Besides, W is of course Hermitian. Hence we can take
W as a transfer matrix for the chain. It corresponds to some
interaction f��� ,��+1� between two neighboring ��� and
��+1� and some inverse temperature 	 �not explicitly impor-
tant here�, given by

W���,��+1� = e−	f���,��+1�.

To simulate the ground state of Htot at a given � for a
particular realization of Jij’s, we construct a uniform chain of
L clusters with PBC. Each cluster is a cluster of N classical
Ising spins �described by cooperative term of Htot� connected
through the given particular realization of Jij’s �see Eq. �1��.
We start with an arbitrary spin configuration �same for all
clusters� and a given value of �. In one Monte Carlo step we
randomly visit L clusters. At each such visit we make an
allowed move �a move whose probability is not trivially
zero�, such that the chain goes from a state A, say, to a new
state, say B. The probability of acceptance of the move is
nothing but the transition probability P�A→B� calculated
following Eq. �9� �using the elements of W�. While sam-
pling, one can easily avoid moves whose probabilities are
trivially zero �due to the sparsity of the matrix W� by con-
structing a more restricted Markov process to do the sam-
pling �12�.

For doing quantum annealing of the same system, we start
with a high enough value of � and reduce it very slowly
with time t �Monte Carlo step� following a linear schedule.
During visiting different clusters in a given Monte Carlo
step, � is, however, held fixed. The linear schedule ��t�
=�in�1− t /�� is specified by ��t=0�=�in and the annealing
time �. We keep � of the order of 95% of the total number of
Monte Carlo steps executed—we allow the system to equili-
brate at �=0 in the remaining 5% of the steps.

To prepare the initial state, we start with a uniform state
with all spins in the same �up, say� direction and run the
Monte Carlo method for the fixed value of �, namely for
�=�in, until it reaches a steady state. The state thus pre-
pared is the Monte Carlo realization of the initial ground
state in the Markovian sense.

III. ANNEALING TO THE CLASSICAL GROUND STATE

We have studied the relaxation behavior of several ran-
dom Jij samples with N=30 for a linear annealing schedule
�we start with an initial transverse field �in and reduce it
linearly with a Monte Carlo step, so that it becomes zero
before the last few, 5%, steps. We observe that for an anneal-
ing of �107 Monte Carlo steps, the system reaches the true
ground state �determined by an extensive search method� in
almost every case, for a suitably large initial transverse field
�in. We calculate the average exchange energy of the chain
�over L clusters� in each Monte Carlo step and average that
over a few, �500, Monte Carlo steps. The exchange energy
�as given by H of Eq. �2�� is not linear in N and we have to
scale it by a factor N3/2 to obtain the intensive energy density.
In the thermodynamic limit, this intensive energy density
approaches the value −0.7633 �16� �our finite size results
show some fluctuations about that�. In Fig. 2 the relaxation
behavior of three typical random realizations �R1, R2, and
R3� during their annealing are shown. We found that for
doing annealing of a given sample within a given number of
steps, there is a suitable range of �in. If �in falls below the
range, then the transition probabilities are too low to be able
to anneal the system within the given time. On the other
hand, if �in is above the range, then the rate of change of
��t� is not slow enough to ensure the convergence to the
ground state finally �i.e., the evolution in no more adiabatic�.
In Fig. 2, the values of respective �in’s belong to the lower
end of the respective ranges. The ranges are generally wide
enough, and one can find a �in within the range, just by a
few trials.

The relaxation behavior is found to be typically “linear”
in the sense that the long-time averages decrease linearly

FIG. 2. Annealing behavior of three different randomly gener-
ated realizations �R1, R2, and R3� of Jij’s is shown for N=30 and
plotted with respect to the Monet Carlo time t. In each case the
system goes to the exact ground state �shown by respective hori-
zontal lines� at the end of the annealing. In each case the annealing
time is 107 Monte Carlo steps, the number of clusters in the chain is
L=600, and each Monte Carlo step consists of visiting L clusters
randomly and making a random spin-flip trial there. In each case,
the transverse field has been reduced to zero from its initial value
�in=5 following a linear schedule, within the Monte Carlo steps.
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with time �see lower part of Fig. 3�. The relaxation observed
in shorter time scale of course shows fluctuations around that
linear behavior �shown in the upper part of Fig. 3�. This
linear nature of relaxation is typically seen independent of
the details of the particular realizations.

In Fig. 4, the �disorder averaged� variation of the final
energy with the annealing time � is shown. When the anneal-
ing time � is small, a small increment in � allows one to
improve the final result substantially. For large ����106�,
the improvement in the final energy is much slower with the
increment in �. This is because for small �, the search is

mostly confined among the higher energy configurations,
which are highly degenerate. Thus a relatively lower energy
configuration �but still quite high in energy� is much easier to
find with a moderate increment in �; but as � is increased, the
search goes down in energy, where the degeneracy is much
lower, and hence it becomes difficult to find a lower energy
configuration even by increasing � substantially.

IV. BETTER SIMULATION OF LOW KINETIC-ENERGY
QUANTUM STATES USING QUANTUM ANNEALING

In a glassy system, where the potential energy landscape
has valleys separated by huge energy barriers, simulating the
ground states �and possibly other low-lying states� for low
kinetic energy �such as the ground state for a low value of
the transverse of a transverse Ising spin glass� using a zero-
temperature quantum Monte Carlo method may be very dif-
ficult and time-consuming. This is because, for a small ki-
netic term, the acceptance probability may become very
small for higher potential energy states, and the system may
take a very long time to get out of a local potential energy
minimum in order to visit other equally relevant lower-
potential-energy valleys. Thus if one gets stuck in a local
minimum far above the ground state, at an early stage of the
simulation, then one would not be able to reach the low lying
valleys �the classical Ising spin configurations with lower
potential energy�, whose contributions to the ground state are
much more significant. This can be remedied to some extent
by annealing the sample quantum mechanically starting with
a high value of the kinetic energy, and then reducing it
slowly up to the low value at which the simulation is desired.
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For the Hamiltonian given by Eq. �2�, simulation of the
ground state for a small fixed value of the transverse field �
�using the zero-temperature transfer-matrix Monte Carlo al-
gorithm described here� is found to be much closer to the
exact result �obtained using exact diagonalization �15�� when
the simulation is done following an annealing �reducing �
from a high value to the low value at which the simulation is
desired� than that done directly keeping the value of � fixed
to the low value from the onset. We compare the results of
both kinds of simulations �with and without annealing� for
several random samples of the spin glass for N=20 with the
respective exact diagonalization results for them �see Fig. 5�.

We conclude summarizing a few points regarding the per-
formance of the algorithm described here. The algorithm dis-
cussed here is quite general �applicable to any disordered
spin system in any dimension� and may be used for simulat-
ing small system sizes quite satisfactorily. However, the
moves are very restricted, since each spin flip in a cluster
requires the two nearest-neighboring clusters to be either in
the same configuration with it, or differ by a single spin flip

�see Eq. �9��. For large system sizes, this is too restrictive a
condition to move freely enough through the configuration
space to procure a satisfactory sampling rate. In addition,
since the acceptance probability for higher potential energy
configurations �like most other zero-temperature quantum
Monte Carlo algorithms �17�� depends on the magnitude of
the kinetic term, it is hard to simulate the ground state for
low values of the kinetic term. We have shown how quantum
annealing can be utilized in overcoming this difficulty �at
least partially�. This remedy is expected to work also for
other zero-temperature quantum Monte Carlo methods in
principle.

ACKNOWLEDGMENTS

We thank M. J. de Oliveira for providing us with the basic
code for a one-dimensional pure Ising chain in a transverse
field. A. Das is also grateful to G. Santoro and E. Tosatti for
useful discussions.

�1� Quantum Annealing and Related Optimization Methods, edited
by A. Das and B. K. Chakrabarti, Lecture Note in Physics Vol.
679 �Springer-Verlag, Heidelberg, 2005�.

�2� A. Das and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061
�2008�.

�3� G. Santoro and E. Tosatti, Nat. Phys. 3, 593 �2007�.
�4� E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren,

and D. Preda, Science 292, 472 �2001�.
�5� T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 �1998�.
�6� G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Science

295, 2427 �2002�.
�7� J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Science

284, 779 �1999�.
�8� R. Martoňák, G. E. Santoro, and E. Tosatti, Phys. Rev. E 70,

057701 �2004�.
�9� A. Das, B. K. Chakrabarti, and R. B. Stinchcombe, Phys. Rev.

E 72, 026701 �2005�.

�10� R. D. Somma, C. D. Batista, and G. Ortiz, Phys. Rev. Lett. 99,
030603 �2007�.

�11� G. E. Santoro and E. Tosatti, J. Phys. A 39, R393 �2006�.
�12� J. P. Neirotti and M. J. de Oliveira, Phys. Rev. B 53, 668

�1996�; M. J. de Oliveira and J. R. N. Chiappin, Physica A
238, 307 �1997�.

�13� F. Barahona, J. Phys. A 15, 3241 �1982�.
�14� E. Seneta, Non-Negative Matrices and Markov Chains, 2nd ed.

�Springer-Verlag, New York, 1981�.
�15� J. Stoer and R. Bulirsch, Introduction to Numerical Analysis,

Text in Applied Maths. Vol. 12 �Springer-Verlag, New York,
1993�.

�16� M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
and Beyond, Lecture Notes in Physics Vol. 9 �World Scientific,
Singapore, 1987�.

�17� L. Stella and G. E. Santoro, Phys. Rev. E 75, 036703 �2007�.

ARNAB DAS AND BIKAS K. CHAKRABARTI PHYSICAL REVIEW E 78, 061121 �2008�

061121-6


